

K1323

контроллер электронного коммутатора для бесконтактных систем зажигания с датчиком Холла

Назначение

Микросхема предназначена для использования в системах бесконтактного электронного зажигания, применяющих в качестве датчика чувствительный элемент, работающий на эффекте Холла. Совместно с внешним высоковольтным NPN транзистором КТ8225А микросхема осуществляет управление процессом протекания тока через катушку зажигания, причем в процессе управления устаанавливаются режимы, способствующие экономичной и надежной работе блока зажигания.

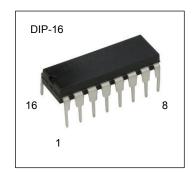
Зарубежный прототип

• L497 фирмы STMicroelectronics

Особенности

- температурный диапазон от 45 °C до + 125 °C
- непосредственное управление внешним мощным транзистором Дарлингтона
- управление временем накопления энергии в катушке зажигания
- ограничение пикового тока в катушке зажигания
- восстановление времени накопления энергии, если не достигнуто 94% значение номинального тока
- выход управления тахометром
- защита от постоянной проводимости
- защита внешнего транзистора Дарлингтона от перенапряжения
- защита при неправильном включении аккумулятора
- климатическое исполнение УХЛ 5.1 по ГОСТ 15150

Обозначение технических условий


АДКБ.431420.132 ТУ

Корпусное исполнение

- пластмассовый корпус 238.16-2 (DIP-16) К1323XB1P
- пластмассовый корпус 4307.16-A (SO-16) K1323XB1T
- кристаллы на общей пластине К1323ХВ1Н4

Справочные данные

• собственная резонансная частота микросхем в диапазоне частот от 100 до 20000 Гц отсутствует.

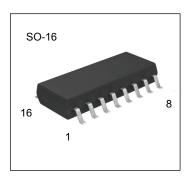


Таблица 1. Назначение и нумерация выводов микросхемы

Номер вывода	Назначение вывода
01	Общий
02	Общий малосигнальный
03	Напряжение питания
04	Не задействован
05	Вход от датчика Холла
06	Выход сигнала управления тахометром
07	Защита схемы управления тахометром
08	Схема восстановления длительности импульса
09	Защита катушки от постоянного тока
10	Управление длительностью импульса
11	Управление длительностью импульса
12	Опорное напряжение
13	Ограничение тока в катушке зажигания
14	Выход на внешний транзистор
15	Защита внешнего транзистора
16	Питание выходного каскада

Описание работы микросхемы

Микросхема предназначена для использования в системах электронного зажигания и осуществляет совместно с внешним высоковольтным NPN транзистором управление процессом протекания тока через катушку зажигания, причем в процессе управления устанавливаются режимы, способствующие экономичной и надежной работе блока зажигания.

Выбор режимов происходит в зависимости от скорости вращения вала двигателя, питающего напряжения и характеристик катушки зажигания. Типовая схема включения позволяет микросхеме управлять оптимальным образом работой катушки зажигания в диапазоне частот от 10 до 200 Гц. (300 - 6000 об/мин для четырехцилиндрового двигателя.)

Основным управляющим сигналом является сигнал, поступающий с датчика Холла на вход 5 микросхемы и представляющий собой последовательность импульсов, несущих информацию о скорости вращения вала двигателя и моменте образования искры.

Основным узлом микросхемы, осуществляющим обработку входного сигнала, является схема управления длительностью накопления энергии в катушке зажигания. Для работы схемы требуется подключение внешних конденсаторов С3 и С4 к выводам 10 и 11 соответственно. Схема производит сравнение напряжений на конденсаторах С3 и С4 и вырабатывает сигналы управления по выходу.

16 **O** 15 O-3 O-**O** 6 Ucc V Формирователь Источник Схема 12 Oсигнала опорного защиты от переуправления напряжения напряжения тахометром Триггер 5 O-Шмитта Схема 10 O-Выходной управления Коммутатор **O** 14 длительностью каскад 11 0импульса Датчик выхода из режима насыщения 13 **O**-Схема Схема защиты от Ограничитель протекания восстановления тока через 8 Oпостоянного тока длительности катушку через катушку импульса зажигания

Рисунок 1. Структурная схема микросхем К1323XB1P и К1323XB1T

Таблица 2. Электрические параметры при приемке и поставке микросхем

Наименование параметра,	Буквен- ное	Норма		Режим измерения	Темпе-	
единица измерения	обозна- чение	не менее	не более	(по выводам 03, 05, 06, 07, 11, 15, 16)	− ратура, °С	
Напряжение стабилизации	U _{Z03}	6,85	8,2		25	
стабилитрона по выводу 03, В		6,8	8,2	I ₀₃ = 70 мА	-45, 125	
Напряжение стабилизации	U _{Z15}	21	29		25	
стабилитрона по выводу 15, В		19	29	$I_{15} = 5.0 \text{ MA}$	-45, 125	
Напряжение стабилизации	U ₂₀₇	21	27	1 - 20 114	25	
стабилитрона по выводу 07, В		19	27	I ₀₇ = 20 мА	-45, 125	
Напряжение насыщения выходного	U _{CEsat16}	-	0,8	I ₁₆ = 180 мА,	25	
транзистора по выводу 16, В	CESatib	-	0,9	U ₀₅ = 3,0 B	-45, 125	
Напряжение насыщения выходного транзистора по выводу 06, В	U _{CEsat 06}	-	0,7	I ₀₆ = 25 мА, U ₀₅ = 3,0 В	25	
Напряжение срабатывания схемы		280	370		25	
ограничения тока в катушке зажигания, мВ	U _{ITP}	260	370	U ₀₅ = 3,0 B	-45, 125	
0 5		1,21	1,29		25	
Опорное напряжение, В	U_REF	1,2	1,3	$U_{05} = 0 B$	-45, 125	
Ток потребления по выводу 03, мА	I _{CC03}	5	22	$U_{05} = 0 B$,	25	
	-0003	5	25	U ₀₃ = 6,0 B	-45, 125	
Входной ток, мкА	I _I	-80	-350	$U_{05} = 0 B$	25	
		-50	-400	U ₀₅ = 2,5 B,	-45, 125	
Ток коллектора выходного транзистора по выводу 11 при	I _{ch11}	8,0	10,5	$U_{05} = 2.5 \text{ B},$ $U_{11} = 0.5 \text{ B},$ $U_{08} = 0.5 \text{ B},$	25	
заряде конденсатора по выводу 11, мкА		7,8	11,0	U ₀₃ *= 4,0 В (I ₀₃ *= 70 мА),	-45, 125	
Ток коллектора выходного транзистора по выводу 11 при		0,55	0,95	$U_{05} = 0 B,$ $U_{11} = 0.5 B,$	25	
разряде конденсатора по выводу 11, мкА	l _{d11}	0,5	1,0	U ₀₃ *= 4,0 В, (I ₀₃ =70 мА)	-45, 125	
Отношение тока коллектора выходного транзистора по выводу 11 при заряде конденсатора по выводу 11 к току коллектора	I _{ch11} /I _{d11}	8,4	19,1	U ₀₃ *= 4,0 B (I ₀₃ *=70 mA),	25	
выходного транзистора по выводу 11 при разряде конденсатора по выводу 11	'CHTT''011	7,8	22,0	U ₀₅ = 2,5 B, U ₁₁ = 0,5 B	-45, 125	
Обратный ток коллектор-эмиттер	I _{L06}	-	40	$U_{05} = 0 B$,	25	
транзистора по выводу 06, мкА		-	50	$U_{06} = 20 \text{ B},$ $I_{03} = 70 \text{ MA}$	-45, 125	
Максимальное время активного состояния, с	T _{SS}	0,4	1,8	U ₀₅ = 2,5 B I ₀₃ = 70 mA	25	

^{*} Примечание: режимы U_{03} = 4,0 В и I_{03} = 70 мА реализуются не одновременно, а на разных тестах.

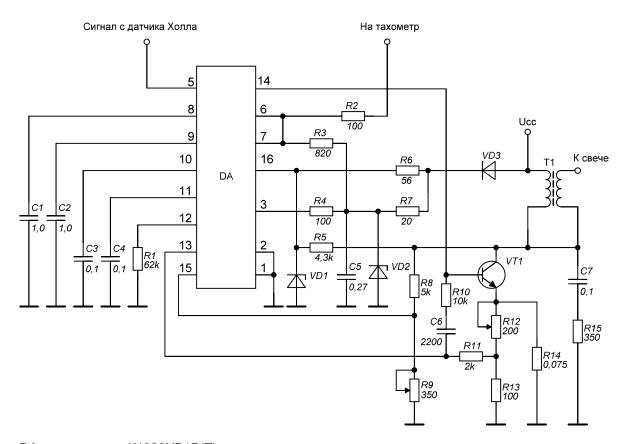
Таблица 3. Предельно допустимые и предельные режимы эксплуатации

Наименование параметра, единица измерения	Буквенное обозначение		ельно ый режим	Предельный режим		Приме- чание
·		не менее	не более	не менее	не более	
Напряжение питания, В	U _{CC}	4	16	4	18	1
Папряжение питания, в	Occ	-	-	-	24	2
Ток потребления по выводу 03, мА	I _{CC03}	5	25	-	200*	-
Напряжение питания выходного каскада, В (вывод 16)	U _{CC16}	-	28	-	28	-
Мощность рассеяния, Вт: - в корпусе 238.16-2 - в корпусе SO-16	P _{tot}	-	1,2 0,65	-	1,2 0,65	3
Тепловое сопротивление кристалл- корпус (алюминиевый теплоотвод) – для микросхем в корпусе SO-16, °C/Вт	R _{t кр-кор}	-	50	-	50	-
Тепловое сопротивление кристаллокружающая среда – для микросхем в корпусе 238.16-2, °C/Вт	R _{t кр-окр}	-	90	-	90	-

Примечания

- 1. Время воздействия не более 2 ч.
- 2. Время воздействия не более 5 мин.
- 3. Для микросхем в корпусе SO-16 температура алюминиевого теплоотвода размерами (15x20x0,65) мм при посадке микросхемы по центру плоской поверхности не выше 65 °C, для микросхем в корпусе 238.16-2 температура окружающей среды не выше 65 °C.

Указания по применению и эксплуатации


- Указания по эксплуатации микросхем по ГОСТ 18725.
- Допустимое значение статического потенциала 500 В.
- Микросхемы пригодны для монтажа в аппаратуре методом групповой пайки при температуре не выше 265 °C, продолжительностью не более 4 с.
- Число допускаемых перепаек выводов микросхем при проведении монтажных (сборочных) операций не более трех.
- Режим и условия монтажа в аппаратуре микросхем по ОСТ 11 073.063.

Требования к надежности

- Наработка микросхем 50000 ч, а в облегченном режиме 60000 ч.
- Облегченные режимы: нормальные климатические условия, U_{CC} = 14 B \pm 5 %.
- Интенсивность отказов в течение наработки не более 1·10⁻⁶ 1/ч.
- Гамма-процентный срок сохраняемости 10 лет.

^{*} U_{CC} не более 18 В.

DA - микросхема K1323XB1P(T)

VT1 – транзистор типа КТ8225A

VD1,VD2 – импульсные стабилитроны на 24 В

VD3 – диод для защиты от переполюсовки напряжения

Т1 – катушка зажигания

Рисунок 2. Типовая схема применения микросхем К1323XB1P и К1323XB1T

Таблица 4. Термины, определения, сокращения и буквенные обозначения параметров, не установленных действующими стандартами

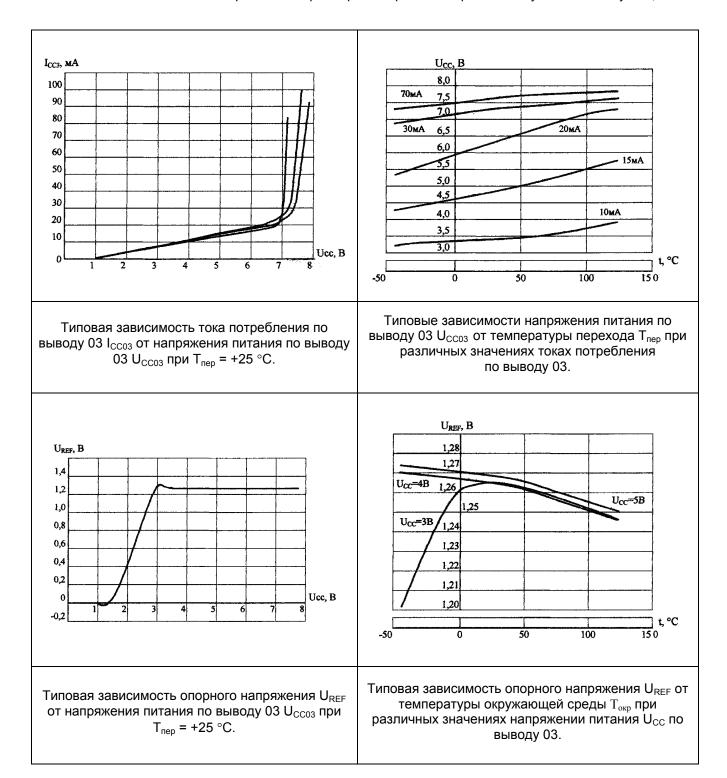
Термин, размерность	Буквенное обозначение	Определение		
1	2	3		
Ток коллектора выходного транзистора по выводу 11 при заряде конденсатора по выводу 11, мкА	I _{ch11}	Ток коллектора выходного p-n-p транзистора по выводу 11, открытого при заряде внешнего конденсатора при применении		
Ток коллектора выходного транзистора по выводу 11 при разряде конденсатора по выводу 11, мкА	I _{d11}	Ток коллектора выходного n-p-n транзистора по выводу 11, открытого при разряде внешнего конденсатора при применении		
Отношение тока коллектора выходного транзистора по выводу 11 при заряде конденсатора по выводу 11 к току коллектора выходного транзистора по выводу 11 при разряде конденсатора по выводу 11	I _{ch11} /I _{d11}	-		
Максимальное время активного состояния, с	T _{SS}	Время поддержания высокого уровня напряжения (более 0,7 В) на выводе 14 при подаче на вход (вывод 05) длительного по времени (более 2 с) сигнала высокого уровня (не менее 3 В)		

Уточнение

при поставке микросхем в бескорпусном исполнении на общей пластине в соответствии с РД 11 0723

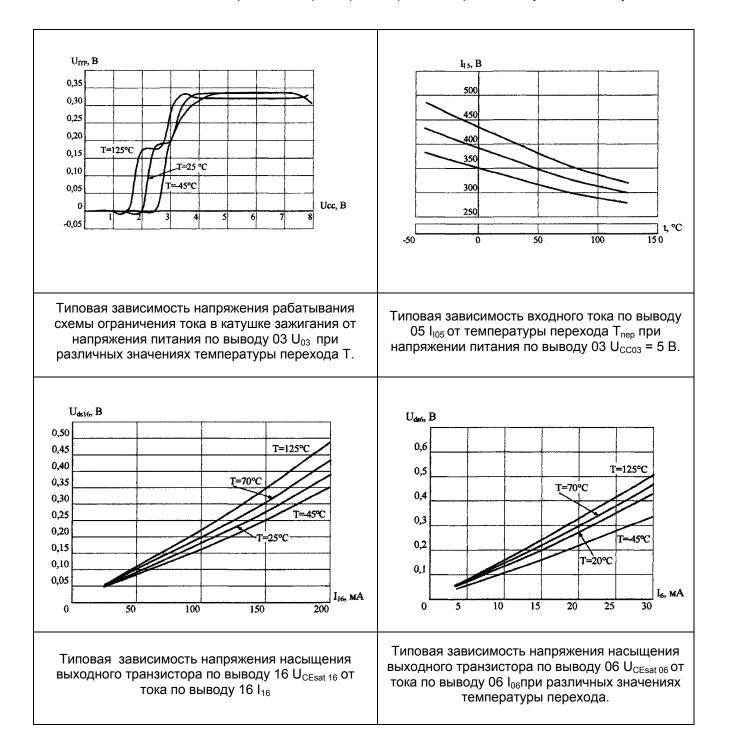
Настоящее приложение содержит уточнение при поставке микросхемы в бескорпусном исполнении на общей пластине в соответствии с РД 11 0723.

Пример обозначения микросхем при заказе (в договоре на поставку):

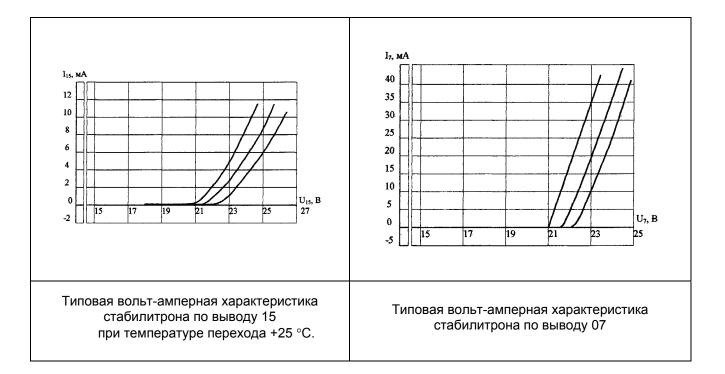

• Микросхема К1323ХВ1Н4 АДКБ.431420.132 ТУ, РД 11 0723.

Общий вид, габаритные и присоединительные размеры микросхем, а также участки контактных площадок, к которым допускается производить пайку и сварку, указаны на габаритном чертеже. Чертеж высылается по запросу потребителей.

Электрические параметры микросхем при приемке поставке соответствуют нормам для нормальных климатических условий, приведенным в таблице 2.



Зависимости основных электрических параметров микросхем от режимов и условий эксплуатации



Зависимости основных электрических параметров микросхем от режимов и условий эксплуатации

Зависимости основных электрических параметров микросхем от режимов и условий эксплуатации

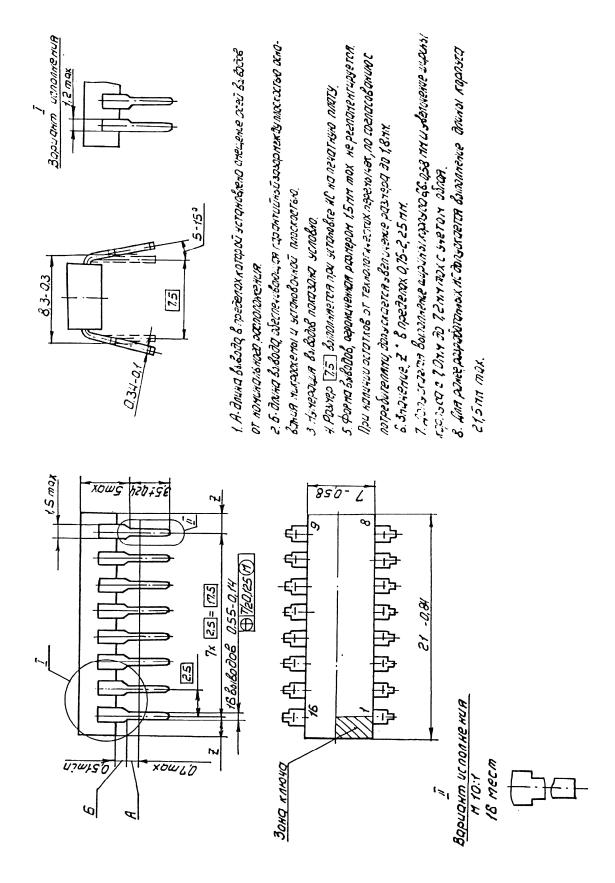
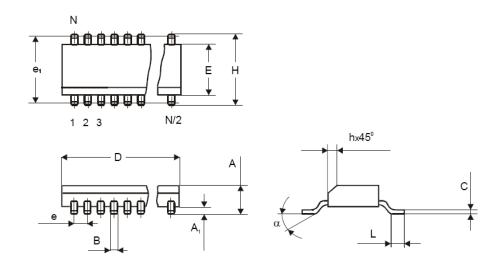



Рисунок 3. Габаритный чертеж корпуса 238.16-2 (DIP-16)

Кол-во выводов, N		8	14	16	16	18	20	24	28
Обозначение корпуса по ГОСТ 17467-		4303Ю.8-A	4306.14-A	4307.16-A	4311Ю.16-A		4321.20 - B	4322.24-A	4323.28-A
88									
JEDEC Аналог		MS-012AA	MS-012AB	MS-012AC	MS-013AA	MS-013AB	MS-013AC	MS-013AD	MS-013AE
Суффикс		D	D	D	DW	DW	DW	DW	DW
Α	min	1,35	1,35	1,35	2,35	2,35	2,35	2,35	2,35
	max	1,75	1,75	1,75	2,65	2,65	2,65	2,65	2,65
A ₁	min	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
	max	0,25	0,25	0,25	0,30	0,30	0,30	0,30	0,30
В	min	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33
	max	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
С	min	0,19	0,19	0,19	0,23	0,23	0,23	0,23	0,23
	max	0,25	0,25	0,25	0,32	0,32	0,32	0,32	0,32
D	min	4,80	8,55	9,80	10,10	11,35	12,60	15,20	17,70
	max	5,00	8,75	10,00	10,50	11,75	13,00	15,60	18,10
Е	min	3,80	3,80	3,80	7,40	7,40	7,40	7,40	7,40
_	max	4,00	4,00	4,00	7,60	7,60	7,60	7,60	7,60
е	nom	1,27	1,27	1,27	1,27	1,27	1,27	1,27	1,27
e ₁	nom	5,72	5,72	5,72	9,53	9,53	9,53	9,53	9,53
н	min	5,80	5,80	5,80	10,00	10,00	10,00	10,00	10,00
	max	6,20	6,20	6,20	10,65	10,65	10,65	10,65	10,65
h	min	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
	max	0,50	0,50	0,50	0,75	0,75	0,75	0,75	0,75
L	min	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40
	max	1,27	1,27	1,27	1,27	1,27	1,27	1,27	1,27
-	min	°°	0°	0°	0°	0°	0°	°°	0°
α	max	8°	8°	8°	8°	8°	8°	8°	8°

Рисунок 3. Габаритный чертеж корпуса 4307.16-A (SO-16)

ОАО "ИНТЕГРАЛ", г. Минск, Республика Беларусь

Внимание! Данная техническая спецификация является ознакомительной и не может заменить собой учтенный экземпляр технических условий или этикетку на изделие.

ОАО "ИНТЕГРАЛ" сохраняет за собой право вносить изменения в описания технических характеристик изделий без предварительного уведомления.

Изображения корпусов приводятся для иллюстрации. Ссылки на зарубежные прототипы не подразумевают полного совпадения конструкции и/или технологии. Изделие ОАО "ИНТЕГРАЛ" чаще всего является ближайшим или функциональным аналогом.

Контактная информация предприятия доступна на сайте:

http://www.integral.by